翻訳と辞書
Words near each other
・ Jack Frost (musician)
・ Jack Frost (politician)
・ Jack Frost (TV special)
・ Jack Frost Ski Resort
・ Jack Frusciante Has Left the Band
・ Jack Frusciante Left the Band
・ Jack Frye
・ Jack Fryer
・ Jack Fryer (footballer, born 1877)
・ Jack Fryer (footballer, born 1911)
・ Jack Fujimoto
・ Jack Fulbeck
・ Jack Fulk
・ Jack Fuller
・ Jack Fultz
Jack function
・ Jack Furness
・ Jack Furniss
・ Jack G. Downing
・ Jack G. Hanson
・ Jack G. Hills
・ Jack G. Merrell
・ Jack Gaffney
・ Jack Gage (director)
・ Jack Galbraith
・ Jack Gale
・ Jack Gallagher
・ Jack Gallagher (comedian)
・ Jack Gallagher (composer)
・ Jack Gallagher (wrestler)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jack function : ウィキペディア英語版
Jack function
In mathematics, the Jack function, introduced by Henry Jack, is a homogeneous, symmetric polynomial which generalizes the Schur and zonal polynomials,
and is in turn generalized by the Heckman–Opdam polynomials and Macdonald polynomials.
==Definition==
The Jack function J_\kappa^(x_1,x_2,\ldots,x_m)
of integer partition \kappa, parameter \alpha and
arguments x_1,x_2,\ldots, can be recursively defined as
follows:
; For ''m''=1 :
: J_^(x_1)=x_1^k(1+\alpha)\cdots (1+(k-1)\alpha)
; For ''m''>1:
: J_\kappa^(x_1,x_2,\ldots,x_m)=\sum_\mu
J_\mu^(x_1,x_2,\ldots,x_)
x_m^\beta_,
where the summation is over all partitions \mu such that the skew partition \kappa/\mu is a horizontal strip, namely
:
\kappa_1\ge\mu_1\ge\kappa_2\ge\mu_2\ge\cdots\ge\kappa_\ge\mu_\ge\kappa_n
(\mu_n must be zero or otherwise J_\mu(x_1,\ldots,x_)=0) and
:
\beta_=\frac^\kappa(i,j)
}^\mu(i,j)
},

where B_^\nu(i,j) equals \kappa_j'-i+\alpha(\kappa_i-j+1) if \kappa_j'=\mu_j' and \kappa_j'-i+1+\alpha(\kappa_i-j) otherwise. The expressions \kappa' and \mu' refer to the conjugate partitions of \kappa and \mu, respectively. The notation (i,j)\in\kappa means that the product is taken over all coordinates (i,j) of boxes in the Young diagram of the partition \kappa.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jack function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.